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Repeated imputation as discussed in the multiple imputation literature
provides a method of adjusting for survey nonresponse.  Inferences drawn
from repeatedly imputed data sets can be statistically valid under the right
conditions.  A little understood paradox of repeated imputation with weighted
survey data is that, although the imputations themselves are often based on
models of variable behavior,  variance estimates derived from repeatedly
imputed data sets are not conditioned on realized survey respondents as is
typical in model-based sampling theory.  Rather, variance estimation relies
on the assumption of a quasi-random response mechanism.  A simple
example illustrates this point.     
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1.  Introduction

Repeated imputation as championed by Rubin (1987) provides a method of adjusting

for survey nonresponse.  When done correctly, inferences drawn from repeatedly

imputed data sets are statistically valid under the right conditions.  Some recent

attempts to question the validity of repeated-imputation inferences (e.g., Fay 1992)

have not fully understood what those conditions are.

A recent article by Meng (1994) tries to clarify the issues surrounding Rubin’s

repeated-imputation strategy.  It fails, however, to reveal the following little understood

paradox ocurring when the methodology is applied to weighted survey data:  although

the imputations themselves are often based on models of variable behavior,  variance

estimates derived from repeatedly imputed data sets are not conditioned on realized

survey respondents as is typical in model-based sampling theory (see, for example,

Royall and Cumberland 1981).  Rather, non-Bayesian variance estimation relies on the

assumption of a quasi-random response mechanism.

 A simple example is introduced in Section 2 illustrates this paradox.  Section 3

addresses the properties of repeated-imputation methodology in estimating the

variance of a theoretical estimator proposed in the previous section.  Section 4

proposes a variant of the example from Section 2, which shows that the survey weights

themselves are not the issue.  It also provides a brief discussion.  

 A note on terminology is in order before proceeding.  The more common term

“multiple imputation” is used by Rubin to describe a broader class of imputation

methodologies than the repeated imputation techniques under discussion here.  As a
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result, except when referring to the literature, the latter expression (“repeated

imputation”) will be used exclusively in the text.         

2. The Example

Suppose one wants to estimate the mean of a domain using a deeply stratified simple

random sample.  The domain of interest is the union of several design strata with

differing sampling fractions.  The domain is viewed as fairly homogeneous, so much so

that it constitutes a single group for imputation purposes.  

The usual design-based, full sample estimator for the domain mean, T, is 

tF = 3S wiyi /3S wi, where S is the sample within the domain, wi is the inverse of the

selection probability for unit i, and yi is value of interest for i.  Since 3S wi is a constant

under stratified simple random sampling, tF is design unbiased.  If we assume a model

in which the yi are uncorrelated random variables with mean : and variance F2, tF is

also model unbiased.  

Now suppose there is some unit nonresponse.  Let R be the respondent sample

in the domain, and M be its complement.   Following the spirit of repeated imputation as

described in Rubin (1987), we can use the model to fill in the missing y-values in M and

create a completed sample.  This process can the be repeated any number of times.  In

particular, we create the v'th completed sample (v = 1, ..., V) by replacing each missing

yj with  

                                  yjv* = 3  aiyi / 3  ai  +  ejv  +  e0v[ 3  ai
2/( 3  ai)

2]1/2,                         (1)

                                                                 i0R       i0R                          i0R       i0R   
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where the euv are uncorrelated random variable with mean zero and variance s2, and s2

is an unbiased estimator for F2.   For now, we will allow the ai in equation (1) be

arbitrary. 

Let the domain mean estimator for the v'th completed sample  be 

t(v) = 3S wiyiv
(*)/3S wi, where yiv

(*) = yiv* when i , M, and yiv
(*) = yi otherwise.  One important

theoretical construct is the average value of t(v) across an infinite number of completed

samples; that is t(4) = plimV64(3 t(v) /V).  It is not hard to see that

                         t(4) = ( 3  wi)
-1 [ 3  wiyi  +  3  wi ( 3  ajyj / 3  aj)].

                                    i0S          i0R            i0M     j0R         j0R 
    

When the yi are uncorrelated random variables with equal variances, t(4) has the

least model variance as an estimator for tF when the ai are all equal.  This suggest we

set all the ai in equation (1) to the same value, say unity.

One of the conditions for the imputation in equation (1) to be what Rubin calls

"proper" is that t(4) be a nearly (i.e,  asymptotically) unbiased estimator for tF under the

assumed  response mechanism (Rubin 1987, p. 118, equation (4.2.5)).  We have not

as yet stipulated a response mechanism; the model we have been assuming involves

the y-values of the units, not their probabilities of response.  One popular response

mechanism posits that every sampled unit in the domain under investigation has an

equal probability of response.  Under this quasi-random response model, one can

easily show that t(4) is nearly unbiased  as an estimator for tF  when ai = wi  but not when

the ai are all equal (recall that in our example the sampling fractions vary across design

strata).
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When a i = wi, t(4) can be expressed as 3R wiyi /3R wi.  Although developed here for

theoretical purposes, this version of t(4) has been used in practice.  See, for example,

Kott (1994). 

3.  The Variance of t(4)

The model variance of t(4) as an estimator for : is 

                   EM[(t(4) ! :)2] = EM[(B + W)2] = EM(B2) + EM(W2) + EM(BW), 

where the subscript M denotes expectation with respect to the model governing the yi, 

B = t(4) ! tF, and W = tF ! :.  Now

                  B = t(4) ! tF

                    = ( 3  wi)
-1 3  wi[( 3  ajyj / 3  aj) ! yi]

                              i0S       i0M      j0R        j0R

                    = ( 3  wi)
-1 3  wi[( 3  ajej / 3  aj) ! ei],

                              i0S         i0M     j0R        j0R

where ei = yi ! :, and

                 W = tF ! :
 
                           = 3  wiei / 3 wi.
                               i0S        i0S 

Observe that EM(B2) = F2(3S wi)
-2[3M wi

2 + (3M wi)
2 3R aj

2/(3R aj)
2].  This is the so-

called "between imputation variance."  It can be estimated by
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                                             V                V        
                                     $ = [ 3  t(v)

2 ! ( 3  t(v))
2 /V] / (V ! 1),

                                            v=1          v=1  

which is essentially equation (3.1.4) in Rubin (1987, p. 76).  Observe that it is the 

presence of the e0v and ejv terms in yjv* as defined by equation (1) that permits $ to be a 

model unbiased estimator for EM(B2).  For future use, we define $(4) as plimV64 $.    

The so-called "within imputation variance" is EM(W2) = F23S wi
2 /(3S wi)

2.   Let 

                                                        H                                  
                             T(v) = 3  [nh /(nh !1)] [ 3  (wiyiv

(*))2 ! ( 3  wiyiv
(*))2 /nh],                          (2)

                                      h=1                    i0Sh                 i0Sh

where Sh is the set of nh sampled units in the domain from stratum h.   If there were no 

nonresponse and the sampling fractions were small enough to ignore, then equation (2) 

would be the usual unbiased estimator for the design variance of tF.  That is its 

intellectual origin. 

Under certain conditions (e.g., when r, the size of R, is large and 3R aj
2 /[3R aj]

2 is

small), T(v) in equation (2) can be shown to be a nearly unbiased estimator for EM(W2). 

Formally, the model bias of T(v) converges to zero as r gets arbitrarily large if 

max{rai} /3R aj is bounded.   Since there is a different T(v) for every v, a reasonable

estimator for EM(W2) would be 

                                                      V   
                                               T = 3  T(v) / V.
                                                    v=1 
 
This is equation (3.1.3) in Rubin (1987, p. 76).  For future use, we define  T(4) as

 plimV64 T.   

Casual reading of the multiple imputation literature seems to suggest that $ + T

is a nearly model unbiased estimator for t(4) (see Rubin 1987, p.76, equation (3.1.5)). 
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That would be true in our example only if EM(BW) is 0.   Observe, however, that   

                        EM(BW) = F2( 3  wi)
-2 3  wi [( 3  ajwj / 3  aj) ! wi],                                   (3)

                                              i0S        i0M       j0R         j0R

which will usually not be zero given a particular respondent sample within the domain.  

In fact, EM(BW) >(<) 0 when 3R ajwj /3R aj >(<) 3M wj
2 /3M wj.  When ai = 1, this 

relationship becomes 3R wj /r >(<) 3M wj
2 /3M wj, where r is the size of R.  When

ai = wi, it becomes 3R wj
2 /3R wj >(<) 3M wj

2 /3M wj.

If we assume a response mechanism in which every sampled unit in the

population has an equal response probability, then the right hand side of equation (3)

would have an expectation of nearly zero when ai = wi under certain conditions (e.g.,

when r is large).  This is because ER[3R wj
2 /3R wj] . 3S wj

2 /3S wj . ER[3M wj
2 /3M wj],

where the subscript R denotes expectation with respect to the response mechanism. 

Under those same conditions, the right hand side of equation (3) would have negative

expectation when ai = 1 because ER[3R wj /r] . 3S wj /n < 3S wj
2 /3S wj . ER[3M wj

2 /3M wj],

where n is the size of S (since the wi are not all equal, 3S wj
2 must exceed (3S wi)

2 /n).  

Thus, it appears that repeated-imputation inference is only statistically valid, in the

sense of producing a nearly unbiased variance estimator for t(4), when the model

governing the yi is combined with a quasi-random response model and then only when

the ai = wi.   A saving grace of the repeated imputation variance estimator for t(4) when

the ai are all equal is that it is conservative under the twin assumptions of the quasi-

random response mechanism and the model governing the yi.  

A more careful reading of Chapter 4 of Rubin (1987)  reveals that the

"randomization validity" of repeated imputation is the only validity claimed for weighted
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survey data.  By contrast, the Bayesian analysis discussed in Rubin's Chapter 3 would

not incorporate weights  when centering the posterior distribution of : given a

completed sample.  

For repeated imputation methods to be valid in our example, the inference

governing a completed sample v can be either model-based or design-based.  In our

context, T(4) is required to be a nearly unbiased estimator for either EM[(tF ! :)2] or

 ED[(tF ! T)2], where D denotes expectation with respect to the original sample design

(Rubin's equation (4.2.8), p. 119, is even more limiting).  The inference from the

respondent sample to the completed sample, however, must be design-based with

survey response treated as a second phase of random sampling.  In our context, $(4)  

must be a  nearly unbiased estimator for ER[(t(4) ! tF)
2] (see Rubin's equation (4.2.6), p. 

118). 

Now the design expectation of $(4) is a nearly ER[(t(4) ! tF)
2] when each sampled

unit is equally likely to respond under certain condition, and the model expectation of

T(4) is nearly EM[(tF ! :)2], but the design expectation of T(4) under the response model

need not be nearly ED[(tF ! T)2].  To see this last point, consider the extreme case

where the yi are constant within design strata and vary across strata.  If a positive

fraction of units do not respond, then T(4) will be positive while ED[(tF ! T)2] is zero.

As a result of the properties of $ and T discussed above, the repeated

imputation variance estimator for t(4), vRI(t(4)) = $ + T, is nearly unbiased given our

assumption about the model governing the yi and the quasi-random response

mechanism, but it is not given the response model and the original sampling design. 

Moreover, it is not nearly unbiased given the original sample and the model governing
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the yi -- an inferential possibility discussed in Rao (1993) and Kott (1994) but not in

Rubin (1987).

4.  Discussion

We saw that the design expectation of T(4) under the response model need not

be nearly ED[(tF !T)2].  As a result, the imputation procedure laid out in Section 2 can

not formally be called "proper" as Rubin defines the term (see Rubin’s equation (4.2.8),

p. 119).  This says more about the limitation of the randomization properties of repeated

imputation than about the appropriateness of the imputations themselves.  Never-

theless, for completeness sake, we will now discuss a variant of the example in Section

2 under which the imputations are proper but the paradox uncovered in the text

remains.

Consider simple random sampling with an ignorably small sampling fraction.  Let

the target of estimation be the ratio, T = 3P zi /3P xi, where P denotes the population of

interest. In the estimator tF from Section 2, substitute xi for wi and let yi = zi /xi.  The rest

of the analysis follows as before except that now the full sample estimator,

tF = 3S zi /3S xi = 3S xiyi /3S xi is asymptotically design unbiased  rather than strictly

unbiased.   In addition, equation (2) changes to 

                             T(v) = [n (n!1)]-1 3  xi
2(yiv

(*) ! [ 3  xjyjv
(*) / 3  xj])

2.                                  (4)
                                                     i0S                    j0S         j0S

 In Section 2, all we required of s2 is that it  be a (model) unbiased estimator for

F2.  In order for the imputations to be proper, s2 must be specified in a tighter fashion
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here.  Let s2 = 3R (zi ! t(4)xi)
2 /(3R xi

2 ! 2[3R xi
3 /3R xi] + [3R xi

2]2 /[3R xi]
2), an admittedly odd

formulation.  An alternative estimator for F2 that is not strictly unbiased but satisfies our

purposes is sA
2 = 3R (zi ! t(4)xi)

2 /(3R xi
2) = 3R [xi

2(yi ! t(4))
2] /(3R xi

2).

It is demonstrated the appendix that when ai = xi, the design expectation of T(4)

under the response model is nearly ED[(tF ! T)2] for arbitrarily large r under mild

conditions (i.e., when the second and third population moments of the xi are bounded

so that, among other things,  the difference between s2 and sA
2 shrinks towards zero as

r gets larger).  As a result, the imputations are proper, and vRI(t(4)) = $ + T is a nearly

unbiased estimator for the design variance of t(4) under the original sampling design and

the response model.  

In this new example, as in the original, the fundamental paradox remains: vRI(t(4))

is not a nearly unbiased estimator given a particular respondent sample when

expectations are defined with respect to the same model that generated the imputations

in the first place.  It is of some interest to note that the full sample estimator, tF, in the

new example is not “weighted” in the usual design-based sense of the term.  It appears

the paradox has more to do with the inefficiency from the model-based perspective of

the nearly design unbiased tF than with survey weights per se.   

The practical importance of the paradox in a world where all models fail is an

open question.  The size of  EM(BW) in equation (3), although not strictly near zero, will

usually be small compared to the total model variance being estimated.  Nevertheless,

for univariate statistics based on complex survey data in the presence of nonresponse,

recent work on the jackknife (partially reviewed in Rao 1993) shows greater theoretical

promise than repeated-imputation inference can hope to deliver.
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 What remains unrivaled is the ability of repeated imputation techniques to handle

multivariate statistics based on complex survey data with complicated patterns of

nonresponse.  Even if repeated-imputation inferences are not always exact or even

near exact in a strict asymptotic sense, they may be good enough for scientific

purposes.  Certainly, repeated imputation has no serious competitors at the present

time.  
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6.  Appendix: Sketch of a proof that when  ai = xi,  T(4) in Section 4 is nearly a

design unbiased estimator for ED[(tF ! T)2]  under the assumed response model

Starting with equation (4),  

                      T(v) = [n (n!1)]-1 3  xi
2(yiv

(*) ! [ 3  xiyjv
(*) / 3  xj])

2                            

                                                i0S                   j0S          j0S

                            = [n (n!1)]-1 3  xi
2(yiv

(*) ! t(v))
2                            

                                                i0S                 
 
                            . [n (n!1)]-1 3  xi

2(yiv
(*) ! t(4))

2    (since t(4) . t(v))                            

                                                i0S
 

                                           . [n (n!1)]-1{ 3  xi
2(yi ! t(4))

2 + 3  xi
2eiv

2}   (since e0v[3R xi
2 /(3R xi )

2]1/2 . 0)
                                                 i0R                    i0M

The last near equality implies

                            T(4) . [n (n!1)]-1{ 3  xi
2(yi ! t(4))

2 +  3  xi
2sA

2}                           

                                                       i0R                     i0M 

                                  =  [n (n!1)]-1{ 3  xi
2(yi ! t(4))

2 + 3  xi
2  3  xj

2(yj ! t(4))
2 / 3  xj

2 }                

                                                        i0R                     i0M    j0R                   j0R

                                  .  [n (n!1)]-1{ 3  xi
2(yi ! t(4))

2 (1 + m/r)}               

                                       
                  i0R 

                
since 3M xi

2/M . 3R xi
2/R under  the every-unit-is-equally-likely-to-respond response 

model. 

Continuing, 

                           T(4)  =  [r (n!1)]-1 3  xi
2(yi ! t(4))

2                 

                                       
                i0R                 

                                  .  [n (n!1)]-1 3  xi
2(yi ! t(4))

2                 

                                                       i0S                 
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                                  .  [n (n!1)]-1 3  xi
2(yi ! tF)

2       (since t(4) . tF)                  

                                              
         i0S                  

                                  =  [n (n!1)]-1 3 (zi ! xitF)
2,                   

                                                       i0S                  

which itself is a nearly design unbiased estimator for ED[(tF ! T)2] . 


